UNIT-II

Drugs acting on Autonomic nervous system

Points to be covered in this topic

- **□** INTRODUCTION
- → **□** ADRENERGIC NEUROTRANSMITTER
- → SYMPATHOMIMETIC AGENTS
 - **□** ADRENERGIC ANTAGONIST

INTRODUCTION

- Autonomic nervous system (ANS)
- It is a complex set of neurons that mediate internal homeostasis without conscious intervention or voluntary control.
- The ANS maintains blood pressure, regulates the rate of breathing, influences digestion, urination, and modulates sexual arousal.

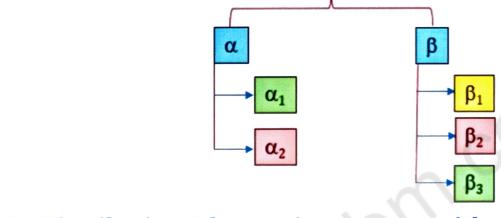
Autonomic nervous system

Sympathetic nervous system ("fight or flight")

Parasympathetic nervous system

("feed and breed")

□ ADRENERGIC NEUROTRANSMITTER

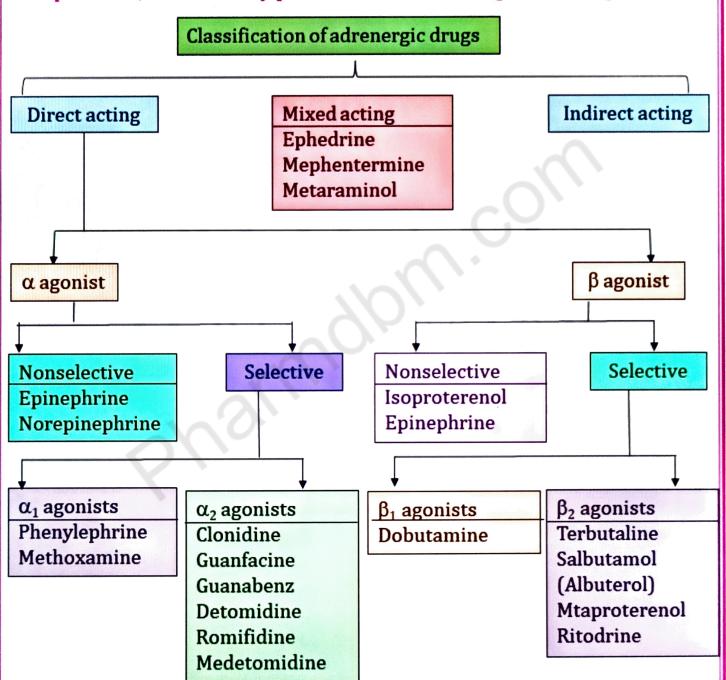

- An adrenergic nerve fiber is a neuron for which the neurotransmitter is either adrenaline (epinephrine), noradrenaline or dopamine.
- These neurotransmitters are released at a location known as the synapse, which is a junction point between the axon of one nerve cell and the dendrite of another.
- Dopamine (pleasure) → feeling of pleasure, also addiction, movement and motivation.
- Nor epinephrine (concentration) → It affect attention and responding action in the brain.
- Epinephrine (Adrenaline) → It produced in stressful situation, increase heart rate & blood flow.
- Biosynthesis of catecholamines
 - The biosynthesis takes place in adrenergic and dopaminergic neurons in the CNS, sympathetic neurons in the ANS and in the adrenal medulla.

(a) Dopamine-β-monooxygenase (c) catechol-o-methyltransferase

(b) Phenyl ethanolamine-N- methyltransferase (d) monoamine oxidase

- Adrenergic receptors (alpha & beta) and their distribution:-
- Adrenergic receptor are those receptor in which adrenergic drugs/neurotransmitter will bind directly to induce various action/responses.
- Adrenergic receptors are membrane bound G-Protein Coupled receptors.

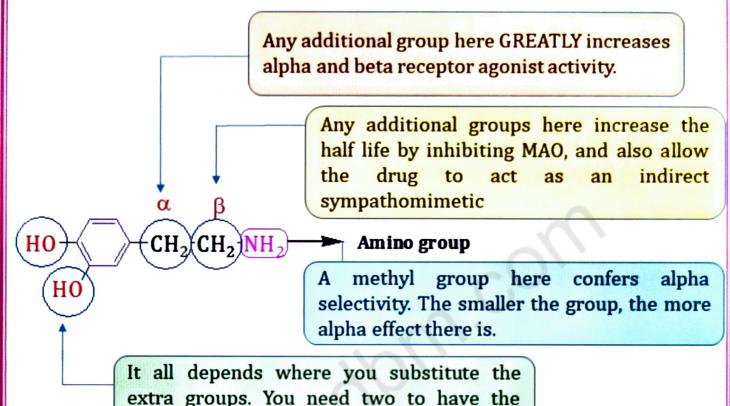
Adrenergic receptors


Distribution Adrenergic receptors with their action:-

Receptor	Location
α_1	Arterioles (coronary, visceral, cutaneous), veins, internal sphincters, Iris dilator muscle.
α_2	Presynaptic membrane, pancreas, veins, adipose tissue, GIT sphincters, salivary glands.
eta_1	Heart (SA node, atrial muscle, AV node, ventricles), kidney (JG apparatus), Adipose tissue.
eta_2 .	Arterioles(muscular), veins, bronchi (muscles), liver, pancreas, uterus, Iris constrictor muscle
β_3	Adipose tissue, urinary bladder.

 These receptor belongs to a large family of cell membrane receptor which are liked to the Carrier protein through the one or more GTP activated protein for producing response.

SYMPATHOMIMETIC AGENTS


- Sympathomimetic drugs (also known as adrenergic drugs and adrenergic amines) are stimulant compounds which mimic the action of sympathetic nervous system.
- Sympathomimetic drugs are used to treat cardiac arrest and low blood pressure, or even delay premature labor, among other things.

Mechanism of action:-

 Sympathomimetic drugs are agents which in general mimic responses due to stimulation of sympathetic nerves.

- These agents are able to directly activate adrenergic receptors or to indirectly activate them by increasing nor epinephrine and epinephrine (mediators of the sympathoadrenal system) levels.
- **❖** SAR of sympathomimetic agents

Drugs acting on sympathomimetic agents:-

maximum receptor affinity.

Direct acting :-These are those drugs/agents which directly bind with adrenergic receptors (Both $\alpha \& \beta$) and gives its pharmacological action. The action produced are of rapid onset and of short duration.

1) Norepinephrine

4-(2-amino-1-hydroxyethyl) benzene-1,2-diol

✓ Mechanism of action

- Potent at α-receptor [less potent than adrenaline.
- Also effect on β1-receptor but no effect on β2 receptor.
- ✓ Uses →
- Strong vasoconstriction properties.
- localize the effects of local anesthetics.

4-(1-hydroxy-2-(methylamino)

2) Epinephrine

ethyl)benzene-1,2-diol 3) Phenylephrine

HO CH-CH2-NH-CH3

3-(1-hydroxy-2-(methylamino)ethyl)phenol

4) Dopamine

CH2-CH2-NH2

4-(2-aminoethyl) benzene -1,2-diol

5) Methyldopa

CH2-C-COOH

2-amino-3-(3,4dihydroxyphenyl)-2methylpropanoic acid

For oral route it is given in the form of prodrug (Pivalic acid) to prevent from first pass metabolism. ✓ Uses →

Directly bind with α , β_1 and β_2 receptor.

✓ Mechanism of action

Used in treatment of asthma Relaxes bronchial muscles.

✓ Mechanism of action Bind at α - receptor, no action on β -

receptors

hypotension.

Uses Increase

surgery. ✓ Mechanism of action Directly bind with \(\beta\)- receptor.

Indirectly on α -receptor

blood

Used as mydriatic agent during

pressure

in

acute

x-methyl

into

Uses Used in congestive heart failures where it

increase BP and urine. Used in patient of shock.

✓ Mechanism of action

Methyldopa converted norepinephrine by enzyme dopamine beta

✓ Uses

Used as antihypertensive.

Prevent heart attack and kidney problem.

hydroxylase and bind with α_2 -receptor

Clonidine

N-(2,6)dichlorophenyl)-4,5dihydro-1H-imidazol-2amine

- Mechanism of action
- It is centrally on α_2 receptor.
- Uses
- Used as hypertension
- Also used as mild sedative

- **Dobutamine**
- OH
- 4-(2-((4-(4
 - hydroxyphenyl)butan-2yl)amino)ethyl)benzene-1,2-

Mechanism of action

(dual acting drugs).

Uses

It is directly stimulate β_1 & α_1 , receptor.

- It is used to treat heart failure problem occurring during Cardiac surgery.
- Treatment of congestive heart failure.
- Isoproterenol 8)
- 4-(1-hydroxy-2-(isopropylamino)ethyl)benz ene-1,2-diol
- Mechanism of action
- Act on both β_1 & β_2 receptors.
- β_1 (increase cardiac output)
- β_2 (increase Broncho dilation)
- Uses
- Used for treatment of bronchial asthma.
- Used in treatment of bradycardia.

9) **Terbutaline**

diol

- Mechanism of action
- Bind with β_2 - receptor better than Isoprenaline.
 - Uses
- Given orally for the treatment of asthma.
- Also use as an aerosol/inhalation.

CH. CH — CH₂ — NH — C — CH₂

- 4-(2-(tert-butylamino)-1hydroxyethyl)-2-(hydroxymethyl)phenol
- Used to relax uterine Smooth muscles

Uses

and to delay premature labour. for relief of bronchospasm. Orally (narrowing of bronchi).

11) Bitolterol

10) Salbutamol

hydroxyethyl)benzene-1,2-

diol

- 4-(2-(tert-butylamino)-1-
- 12) Naphazoline
- 2-(naphthalen-1-ylmethyl)-
- 4,5-dihydro-1H-imidazole
- 13) Oxymetazoline

5-(tert-butyl)-3-((4,5dihydro-1H-imidazol-2yl)methyl)-2,4dimethylphenol

✓ Mechanism of action Bind with β_2 - receptor.

✓ Mechanism of action

Directly bind with β_2 -receptor.

- ✓ Uses
- **Prodrug of colterol**
- Bronchodilator (used to treat asthma).

Powerful α -receptor which stimulant (α_1

- & α_2)
- Uses
- Used as a vasoconstrictor.

✓ Mechanism of action

- Reduced swelling.
- Relief of rhinitis and sinusitis.
- ✓ Mechanism of action
- Partially agonist at α_2 and selective agonist at α_1 receptor.
- Uses
- Due to their vasoconstriction properties, it is used to treat nose bleeding and redness of eye due to irritation.

14) Xylometazoline

2-(3-(tert-butyl)-2,6-dimethylbenzyl)-4,5-dihydro-1H-imidazole

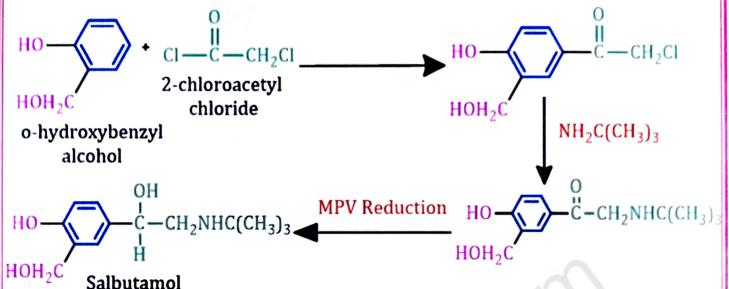
- ✓ Mechanism of action
- Bind with both $\alpha_1 \& \alpha_2$ receptor.
- ✓ Uses
- Produces constriction of large veins in nose.
- Treat symptoms of nasal congestion, allergies e.g.- NASAL DROPS.

Synthesis of Phenylephrine:-

From: 3-Chloro acetyl phenol

-HCl

3-chloro acetyl phenol


(i) H2/Catalytic reduction (ii) Resolved with d-camphor sulphonate

Phenylephrine

✓ Properties


- It is a white or almost white crystalline powder, freely soluble in ethanol and water.
- It resistant to COMT and has predominantly α1 agonist effect.

- · Synthesis of salbutamol:-
- From:- o-Hydroxy benzyl alcohol

- ✓ Properties
- It is a white or almost white crystalline powder, sparingly soluble in water, but freely soluble in ethanol.
- It has strong $\beta 2$ adrenergic activity.
- ➤ Indirect acting: Those drugs which act indirectly to increase the concentration of neurotransmitter by causing its release.

1) Hydroxyamphetamine

(R)-N-(1-phenylpropan-2-yl)hydroxylamine

✓ Mechanism of action

- Cause release of nor-adrenaline.
- from nerve synapse and causes dilation of pupil.
- ✓ Uses
- Used an eye drop to dilate the pupil.
- Used as a Horner syndrome diagnostic agents for testing (damage of nerve of eye).

2) Pseudoephedrine

OH

2-(methylamino)-1-

phenylpropan-1-ol

arme

NH-CH₃

CH-CH-CH₃

- ✓ Mechanism of action
- It stimulates both α_1 & α_2 receptor.
 - It stimulate central nervous system.
- ✓ Uses
 - It increase the blood pressure (hypertension) by increasing cardiac output and causing vasoconstriction.

Activates α-receptor in the mucosa of

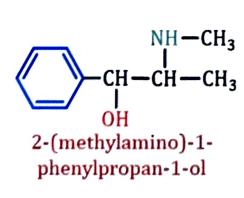
mucous membrane of nose) due to any

(inflammation

- 3) Propylhexedrine
- OH—CH—CH—CH₂—NH₂
 CH₃

3-(3-amino-1-hydroxy-2-

methylpropyl)phenol


OH

✓ Mechanism of action

allergies, rhinitis

respiratory tract.

- ✓ Uses
- Used to relief of congestion due to cold,
- virus infection (common cold)or any allergic reaction.
- Mixed acting:- These are those drugs which act on adrenergic receptors and also effect the release of noradrenaline.
- Act both as direct acting and indirect acting.
- 1) Ephedrine

- ✓ Mechanism of action
- It stimulates both α_1 & α_2 receptor.
- It stimulate central nervous system.
- ✓ Uses
- Used as nasal decongestant in the form of nasal drops & nasal spray.
- Used in various allergic disease like hay fever and urticaria.

OH CH-CH-CH3

3-(2-amino-1hydroxypropyl)phenol

H₂N

- ✓ Mechanism of action
- Act on both α_1 & α_2 receptor.
 - Stimulates noradrenaline.
- ✓ Uses
- Used in the treatment of hypotension.

■ ADRENERGIC ANTAGONIST

- Adrenergic blockers are also called as antiadrenergic drugs or sympatholytic.
- Drug that inhibits the function of adrenergic receptors.
- 1. Adrenergic receptors:- which are divided into two groups.
- The first group of receptors are the beta (β) adrenergic receptors. There are β 1, β 2, and β 3 receptors.
- The second group contains the alpha (α) adrenoreceptors. There are only $\alpha 1$ and $\alpha 2$ receptors
- ***** Mechanism of action of α -Adrenergic receptor blockers:-
- Adrenergic antagonists have inhibitory or opposing effects on the receptors in the adrenergic system.
- Administration of an adrenergic antagonist that specifically targets the β-receptors, results decrease in blood pressure by reducing cardiac output.
- **❖** Drugs acting on Adrenergic blockers :-

1) Tolazoline

2-benzyl-4,5-dihydro-1Himidazole

- ✓ Mechanism of Action (Reversible)
- It is Structurally similar as α -agonists, so they blocks the α -receptor and, stop α -agonists to produce effects.
- ✓ Uses
- Used as Vasodilator.
- It Causes stimulation of gastric acid secretion.

N-CH₂-(3-(((4,5-dihydro-1Himidazol-2-yl)methyl)(ptolyl)amino)phenol **Phenoxybenzamine** 3) NH_2 2-phenoxyaniline 4) Prazosin

O=C-N N

Phentolamine

CH₃

2)

Uses Used as catecholamines effects (vasoconstriction).

Used to control hypertensive conditions.

✓ Mechanism of action

Mechanism of action

It blocks both $\alpha_1 \& \alpha_2$ receptor.

a

vasodilators,

the treatment

Used in the treatment of hypertension

caused by Pheochromocytoma.

in

antagonist of *a-adrenergic*

inhibit

urinary

- It blocks both $\alpha_1 & \alpha_2$ receptor. Irreversible α-blocker. Uses
- Used in retention.
- Mechanism of action It has affinity for α_1 -receptor, so it blocks
- α_1 receptor. Uses It is used to treat heart failure and
- Raynaud syndrome

an

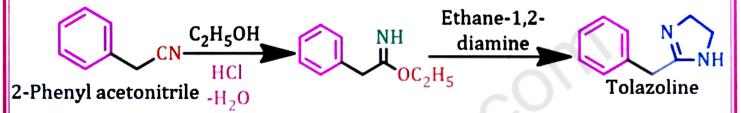
Mechanism of action

yl)methanone 5) Methysergide H₂C-OH

(4-(4-amino-6,7-

dimethoxyquinazolin-2-

yl)piperazin-1-yl)(furan-2-


- receptor. Potent serotonin antagonist Uses
- Used as prophylactic in the treatment of severe migraine.

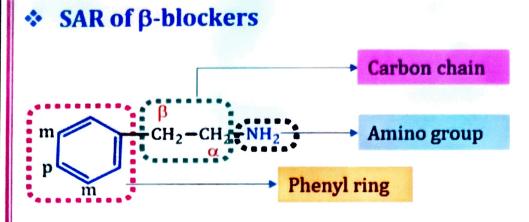
6) Dihydroergotamine

- ✓ Mechanism of action
- It is an antagonist of α-adrenergic receptor.
- ✓ Uses
- Used as vasoconstriction.
- Used in the treatment of migraine.

Synthesis of Tolazoline :-

From: Phenyl acetonitrile

Adverse effects of Adrenergic Antagonists


- Cold feet and hands.
- Fatigue.
- Nausea, weakness, and dizziness.
- Dry mouth, skin, and eyes.
- Slow heartbeat.

2. β-Adrenergic blockers:

- A class of drug, that blocks β -adrenergic substances such as adrenaline (epinephrine).
- It antagonizes the effects produced by the drug acting on β receptor.

* Mechanism of action of β-Adrenergic blockers:

- It reduces your blood pressure.
- Beta blockers work by blocking the effects of the hormone epinephrine, also known as adrenaline.
- Beta blockers cause your heart to beat more slowly and with less force, which lowers blood pressure

Phenyl ring

- Aromatic ring and its substituent is the primary determinant of β_1 antagonistic activity.
- Alkenyl and Alkanyloxy group when present in o-position on phenyl ring, give good B-antagonist activity.
- If phenyl ring is replaced by naphthyl or substituted than they are nonselective (e.g. propranolol).
- Addition of -OH group in phenyl ring lead to removal of antagonist activity.
- N, N-disubstitution decreases the β blocking activity, and the activity
 is maintained by the addition of phenyl ethyl or hydroxy phenyl ethyl
 to amine as a part of the molecule.
- Substitution of the carbon chain
- The -OCH2 group is placed between the aromatic ring ethyl amine side chain increase activity or essential for the activity.
- Two carbon chain are essential for the activity.
- Substitution on amino group
- If isopropyl and t-butyl are present an amino group, then it provides nucleophilicity to the amino group.
- ❖ Drugs acting on Beta Adrenergic blockers :-

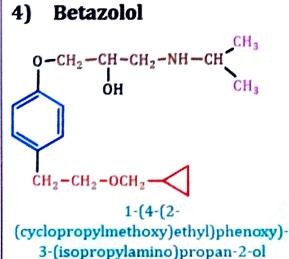
1) Propranolol

1-(isopropylamino)-3-(naphthalen-1yloxy)propan-2-ol

- ✓ Mechanism of action
- It act due to decrease renin release and reduced cardiac output.
- It is non selective β-adrenergic blocker.
- ✓ Uses
- Used in the treatment of hypertension.
- Used in the treatment of cardiac arrhymia.
- **Metibranolol** 2) O-CH₂-CH-CH₂-NH-CH CH₃

4-(2-hydroxy-3-

(isopropylamino)propoxy)-2,3,6-

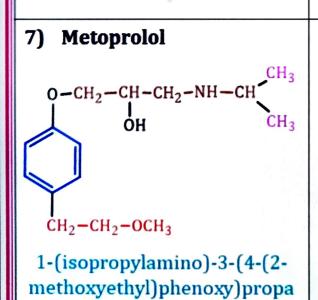

OCOCH₃

- ✓ Mechanism of action
- Uses

It is non selective β-adrenergic blocker.

- Used in eye drop and the treatment of glaucoma.
- trimethylphenyl acetate 3) Atenolol O-CH2-CH-CH2-NH-CH OCOCH₃ 4-(2-hydroxy-3-(isopropylamino)propoxy)phenyl acetate
- Mechanism of action
- It is non β_1 -selective antagonist.
- ✓ Uses
- Used in the treatment of hypertension.
- Used in the emergency treatment of cardiac arrhythmia.

4)


- Mechanism of action
- It is non β_1 -selective blocker.
- Uses
- Used in the treatment of hypertension.
- Used in eye drop and the treatment of glaucoma.

5) Bisoprolol O-CH₂-CH-CH₂-NH-CH CH₃ CH₂-O-CH₂-CH₂-O-CH CH₃ 1-(4-((2-isopropoxyethoxy)methyl)phe noxy)-3(isopropylamino)propan-2-ol 6) Esmolol O-CH₂-CH-CH₂-NH-CH CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃

- ✓ Mechanism of action
- It is non β_1 -selective blocker.
- ✓ Uses
- Used as hypertension.
- Used in the treatment of heart disease e.g. cardiac arrhythmia, myocardial infraction.

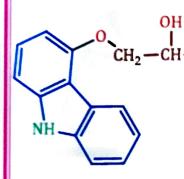
O-CH₂-CH-CH₂-NH-CH CH₃ CH₂CH₂COOCH₃ methyl 3-(4-(2-hydroxy-3-(isopropylamino)propoxy)phe

- Mechanism of action
 It is non β₁-selective blocker.
- ✓ Uses
- Used as short acting hypertension.
- Used in the early treatment of myocardial infraction.

n-2-ol

nyl)propanoate

- ✓ Mechanism of action
- It is non β_1 -selective blocker.
- ✓ Uses
- Used in the treatment of hypertension.
- Helpful in the treatment of heart failure.


8) Labetalol

CH-CH₂-NH-CH
CH₂-CH₂
CONH₂

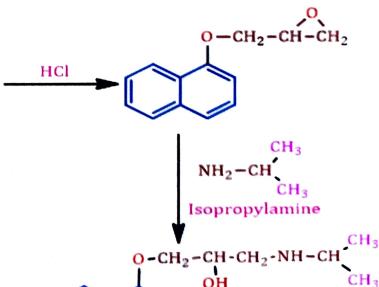
2-hydroxy-5-(1-hydroxy-2-((4phenylbutan-2yl)amino)ethyl)benzamide

- ✓ Mechanism of action
- It is non β_1 -selective blocker.
- Act as competitive blocker on both
 α 1 and β-receptor.
- ✓ Uses
- Used as antihypertensive agent.
- Given intravenously in sever hypertension.

9) Carvedilol

CH₂-CH-CH₂-NH-CH₂-CH₂-O-1-((9H-carbazol-4-yl)oxy)-3-((2-(2-methoxyphenoxy)ethyl)amino)propan-

2-ol


H₃CO-

- ✓ Mechanism of action
- Non selective β blocker. Act on both α_1 and β -receptor.
- Due to α₁- blocker it relax blood vessels, and reduce BP.

✓ Uses

- Used as antihypertensive agent.
- Given intravenously in sever hypertension.

Synthesis of Propranolol

- Adverse effects of Beta- adrenergic blockers
 Cold feet and hands.
 Fatigue.
- Nausea, weakness, and dizziness.
- Dry mouth, skin, and eyes.
- Slow heartbeat.
- Swelling of the hands and feet.
- Weight gain