UNIT-IV MICROMERETICS

Points to be covered in this topic

INTRODUCTION

PARTICLE SIZE AND DISTRIBUTION

METHODS FOR DETERMINING PARTICLE SIZE

METHODS FOR DETERMINING SURFACE AREA

DERIVED PROPERTIES OF POWDERS

INTRODUCTION

- Micromeritics is the science and technology of small particles.
- It also involves the study of the fundamental and derived properties of the individual, as well as a collection of particles.
- The term was given by J.M. Dalla Valle.
- The unit of particle size used is the micrometer, μm , micron, μ , and equal to $10^6 m$.

> IMPORTANCE OF MICROMERITICS IN PHARMACY

- The size and surface area of the particles affects the physical, chemical and physiological properties of a drug.
- The particle size of a drug affects the rate of release of drug from a dosage which is administered orally, parenterally, rectally and topically.
- The dissolution rate is faster from a smaller particle size because of its high specific surface area.
- The sedimentation rate in suspension is faster with larger particles.
- Therefore, to make a stable suspension or emulsion the particle size must be controlled.
- For the precise determination of the pore size of the filters the particle size is required.
- The flow properties of powders in the manufacture of a solid dosage form (such as tablets or capsules) depend on particle size, size distribution, and size distribution.

PARTICLE SIZE AND DISTRIBUTION

- A powder sample is characterized by particles shape, particles size and particle size distribution.
- If all the particles have the same diameter then the powder sample is called a monodisperse system, but if all the particles are not a equal size , then that sample is called Polydisperesed system.
- The size of a sphere is readily expressed in terms of its diameter.
- √ Surface diameter (d_s)
 - The diameter of a sphere having the same surface area as the particle

$$ds = \sqrt{\frac{S}{\pi}}$$

- √ Volume diameter
 - The diameter of a sphere having the same observed area as the particle.
- ✓ Projected diameter
 - The projected diameter of a sphere having the same observed area as the particle.

✓ Stokes diameter

- The diameter which describes an equivalent sphere undergoing sedimentation at the same rate as the asymmetric particle.
- ✓ Feret's diameter
 - It is the distance between two tangents on opposite sides of the particle parallel to some fixed direction.

/ Martin's diameter

- Martin's diameter is the length of a line that bisects the particle image.
- The line can be drawn in any direction but must be in the same direction for all particles measured.

> SIZE DISTRIBUTION

- When the number or weight of particles lying within a certain size range is plotted against the size range or mean particle size, a socalled frequency distribution curve is obtained.
- This is important because it is possible to have two samples with the same average diameter but different distributions.

MICROMERITICS APPLICATIONS

RELEASE AND DISSOLUTION

- Particle size and surface area influence the release of a drug from a dosage form.
- Higher surface area allows intimate contact of the drug with the dissolution fluids in vivo and increases the drug solubility and dissolution.

ABSORPTION AND DRUG ACTION

- Particle size and surface area influence the drug absorption and subsequently the therapeutic action.
- Higher the dissolution, faster the absorption and hence quicker and greater the drug action.

PHYSICAL STABILITY

- The particle size in a formulation influences the physical stability of the suspensions and emulsions.
- Smaller the size of the particle, better the physical stability of the dosage form.

DOSE UNIFORMITY

 Good flow properties of granules and powders are important in the manufacturing of tablets and capsules.

PARTICLE NUMBER

- It is defined as Number of particles per unit weight.
- Suppose that the particles in powder are spherical then the volume of a single particle is πd_{vn^3} /6, and mass will be $(\pi d_{vn^3} \rho)$ /6g per particle.
- The number of particles per gram can be obtained as

$$N = \frac{6}{\pi d_{vn^3} p}$$

✓ Where

- d_{vn} = mean diameter based on volume and number
- ρ = density of particle

> PARTICLE SHAPE

- · The shape affects the flow and packing properties of a powder.
- A spherical particle is fully characterized by its diameter.
- As the particle becomes more asymmetrical, it becomes increasingly difficult to assign a diameter.
- In this case equivalent spherical diameter is measured in case of asymmetric particles, surface area or volume is expressed as
- Surface area = $a_1d_2^2 = \pi d_2^2$
- Where α_3 is the surface area factor and d_3 is the equivalent surface diameter.

> SPECIFIC SURFACE

- The specific surface of powder is defined as the surface area per unit volume (S_v) or per unit weight (S_w).
- For asymmetric particles where the characteristic dimension is not define, specific surface area per unit volume is expressed as

$$S_v = \frac{\text{Surface area of particles}}{\text{Volume of particles}}$$

METHODS FOR DETERMINING PARTICLE SIZE

- There are various methods to estimate particle sizes are
 - 1. Optical microscopy
 - 2. Electron microscopy
 - 3. Sieving method
 - 4. Sedimentation method
 - 5. Coulter counter method

OPTICAL MICROSCOPY (range of analysis 0.2 - 100μm)

- This method is used to determine projected area diameter, ferrets diameter and martin's diameter.
- This methods directly provide number distribution method.
- ✓ Advantage
- Agglomerates or contamination can be detected.
- ✓ Disadvantages
- · Slow and tedious method.
- This method measure only length and breadth of particle.
- Not used to measure depth of particles.

ELECTRON MICROSCOPY

- Both the scanning electron microscope (SEM)
 and transmission electron microscopy (TEM)
 analysis are used to measure the lower limit of
 particle size.
- Scanning electron microscopy is particularly appropriate when a three – dimensional particle image is required.

❖ SIEVING METHOD (Range of analysis 50-1500µM)

- · This method is used to determine sieve diameter (ds).
- Sieving method is an ordinary and simple method.
- ✓ Advantage
- Simple and inexpensive method.
- ✓ Disadvantage
- Particles below size of 50 μm difficult to measure.
- · Chances of clogging of sieve.
- Chances of attrition during shaking.
- Need large amount of powder.

SEDIMENTATION METHOD (RANGE OF

ANALYSIS 1 - 200μM)

• This method is used to measure the stokes so diameter(d_{st}), the diameter of a particle measured during sedimentation at constant speed under laminar flow conditions and the frictional drag diameter, a sphere having an equivalent drag force to a particle of the same diameter in the same fluid at same velocity.

• Rate of sedimentation of particle on their size is determined by stokes law.

$$d_n = \sqrt{\frac{18\eta_0 h}{(\rho_s - \rho_0)gt}}$$

- ✓ Where,
 - h = distance of fall in time t
 - p_s = density of particle
 - p_0 = density of dispersion medium
 - g = acceleration due to gravity
 - η_0 = viscosity of medium

✓ Andreason pipette method

- Andreason pipette is widely used method to determine particle size distribution by sedimentation method.
- It usually consists of a 550 ml beaker containing 10 ml pipette sealed in a ground glass stopper.
- When the pipette is placed in the cylinder, its lower tip is 20 cm below the surface of the suspension.
- A 1% or 2% suspension of the powder in a medium containing a suitable deflocculating agent is introduced into the vessel.

- The vessel is stoppered and agitated to distribute the particles evenly along the suspension.
- The vessel is firmly held in a constant temperature bath.
- At different time intervals, 10 ml samples are drawn.
- The samples are evaporated and weighed.

Advantage

- Precise result obtained
- Disadvantage
 - · Labarious method
 - Very small particles cannot be measured accurately due to prolong settling rate.

COULTER COUNTER METHOD (range of analysis – 0.1 1000μm)

- This method is used to determine particle volume.
- The size is expressed as volume diameter, dv Coulter Counter Method (Electrical stream sensing zone method) is a sophisticated method.
- A known volume of a diluted suspension is pumped through the orifice to either side of the electrodes.
- Electrodes located on either side of the aperture and surrounded by an electrolytic solution.
- A constant voltage is applied through the electrodes to produce a current.
- The change in the electrical signal that occurs when a particle occupies the orifice momentarily and displaces its own volume of electrolyte.
- The change in resistance between electrodes cause voltage pulse which is amplified and processed electronically.
- The magnitude of pulse is generated which is proportional to the volume of the particle.

✓ Advantages

- It is one of the precise and accurate method.
- Analysis range is wide.

✓ Disadvantages

- Aggregation of particle produce wrong result.
- · Coarse particles blocking a small diameter orifice.

METHODS FOR DETERMINING SURFACE AREA

- · The commonly used methods are:
 - ✓ Adsorption method
 - ✓ Air permeability method

ADSORPTION METHOD

- A large specific surface allows good adsorption of gas and/or solutes from a solution.
- The volume of gas (in m³) adsorbed per gram of adsorbent (solid) can be plotted against the pressure of gas introduced at constant temperature.
- At low pressure, the gas adsorbs on the surface of adsorbent and form a monolayer.
- At saturation, the amount of adsorbed is a function of surface area of powder.
- At high pressure, the adsorbed layer becomes multi-molecular.
- The completion of mono-molecular film can be identified using BET equation. At that stage, the volume (y_m) adsorbed per one gram can be obtained.

$$\frac{p}{y(p_0 - p)} = \frac{1}{y_m b} + \frac{(b - p)}{y_m b} \cdot \frac{p}{p_0}$$

- P = pressure of the adsorbate, mmHg
- V = volume of vapor gas per gram, g
- P₀ = vapor pressure at saturation (monolayer), mmHg
- Y_m = amount of vapor adsorbed per unit mass of adsorbent when the surface is covered with monomolecular layer, g
- b = constant, proportional to heat of adsorption and latent heat of condensation of subsequent layers.

PROCEDURE

- A known weight of powder is introduced into the sample tube.
- The sample is mounted to the out-gassing station to remove gas.
- Then the sample tube is mounted to the analysis station.
- A mixture of helium and nitrogen are used as adsorbate gas.
- Nitrogen gas adsorbs on the powder and helium does not adsorb (inert). Vapour dosing options are available with the instrument.
- A mixture of gases is passed through sample tube (containing powder)
 at a specific pressure and temperature (thermostat facility).
- The amount of nitrogen gas adsorbed and desorbed is measured using a thermal conductivity detector.
- The signal height is proportional to the rate of adsorption or desorption of nitrogen gas.
- The area under the curve is proportional to the gas adsorbed on the particles.

> AIR - PERMEABILITY METHOD - FISHER - SUBSIEVE SIZER

- · Air permeability method is official in IP.
- · This method also used to estimate surface diameter, d.

PRINCIPLE

- Powder is packed in the sample holder as a compact plug.
- In this packing, surface-surface contacts between particles appear as a series of capillaries.
- The surface of these capillaries is a function of the surface area of the powder.
- When air is allowed to pass, air travel through these capillaries and thus this method is related to surface area of powder.
- When air is allowed to pass at a constant pressure, the bed resists the flow of air.
- This results in a pressure drop.
- The greater the surface area per gram of the powder, S_w the greater the resistance to flow.
- The permeability of air for a given pressure drop is inversely proportional to specific surface.
- The Kozeny-Carman equation is used to estimate the surface area by this method.
- This is based on the principle of Poiseulle's equation.

$$\mathbf{v} = \frac{\mathbf{A}}{\eta \mathbf{S}_{\mathbf{w}}^{2}} \cdot \frac{\Delta \mathbf{P} \mathbf{t}}{\mathbf{K} \mathbf{l}} \cdot \frac{\varepsilon}{\left(1 - \varepsilon\right)^{2}}$$

- A = cross sectional area of the bed (pack), m²
- $\Delta P = pressure difference of the plug, Pa (or mmHg)$
- t = time of flow, s
- L = length of the sample holder, m
- $\eta = porosity$ of the powder
- $S_w = surface area per gram of the powder, m^2/g$
- h= viscosity of the air pa.s
- K = constant
- V = volume of air flowing through the bed, m^3

* METHOD

- It consists of a sample tube containing the packed powder sample with one end connected to an air pump through a constant pressure regulator.
- The other end is attached to a calibrated manometer containing a suitable liquid of low viscosity and negligible vapor pressure.
- The air pump builds up air pressure and is connected to a constant pressure regulator.
- Air is passed through the dryer to remove any moisture. Air is then allowed to flow through the packed powder in the sample tube.
- The flow of air is measured by the manometer.
- The level of the fluid in the manometer is related to the average diameter of the particles.
- The higher the surface area, the greater is the resistance, the pressure drop is higher and manometer level decreases.
- Commercial equipment is standardized to eliminate the mathematical computation.
- Average particle diameter can be read from the calculator charts supplied with the equipment.

- Simple instrumentation and high speed, it is widely used pharmaceutically for specific surface determinations.
- Bephenium hydroxynaphthoate, official in the 1973 is standardized by air permeability method.
- Activity of some drugs is related to the specific surface. Ex: Anthelmintic drugs in suspension dosage form must possess a surface area of not less than 7000 cm²/g.
- As the specific surface of the material is reduced, the activity of the drug also falls.
- Air permeability method, officially in U.S. pharmacopoeia used for determining the specific surface area of griseofulvin.
- · This method is also used for measuring the fineness of Portland cement

DERIVED PROPERTIES OF POWDERS

TRUE DENSITY

- It is the density of the material itself. It is defined as:
- True density, $\rho_p = \frac{\text{weight of powder}}{\text{true volume of powder}}$
- The density is dependent on the type of atoms in a molecule, arrangement of the atoms in a molecule and the arrangement of molecules in the sample.
- Apart from true density, powder is also characterized by granule density and bulk density.
- Porous solids helium displacement method
 - Helium penetrates the smallest pores and crevices.
 - This is valuable tool to estimate the true density, particularly for porous solids.

Method

- It consists of a sample holder (A), which can be sealed after placing the sample.
- The valve (B) is connected to the sample holder.
- It has provisions for removing the air from the sample holder and introducing the helium gas.
- · Helium gas is selected as it does not adsorb on the solid sample.
- A pressure detector (C) is included in order to maintain preset constant pressure.
- It has sealed bellows which maintains the electric contact at a particular pressure.
- A piston (D) is attached in order to read the corresponding pressure,
 which is also related to the volume of the powder.
- Initially, the volume of empty pycnometer is determined.
- The air present in the sample holder is removed by applying vacuum.
- Then helium gas is passed into the apparatus through the valve (B).
- The pressure is adjusted and set a particular value with the help of a movable piston (D).
- At this position, the reading on the scale denotes U.
- This represents the volume of empty cell.
- In the next step, pycnometer is calibrated by placing a standard sample of known true volume (V_c) (stainless steel spheres) in the sample holder.
- The sample holder is sealed and air is removed.
- The same amount (as used in the first step) of the helium gas is introduced.
- Pressure is adjusted to preset value by moving the piston suitably.
- At this stage, the scale reading is denoted by U₂.
- The last step involves the determination of volume of the sample.
- The stainless steel sphere is replaced by the test sample powder.
- The air in the pycnometer is replaced by helium gas (same quantity as used in earlier steps).

- · The pressure is adjusted with the help of piston.
- At this state, the piston reading is denoted by U_s.
- The difference between U_1 and U_2 , gives the volume occupied by the sample.
- The operating equation for the instrument is

$$\mathbf{V}_1 = \frac{\mathbf{V}_T}{\mathbf{U}_1 \cdot \mathbf{U}_2} \left[\mathbf{U}_1 \cdot \mathbf{U}_S \right]$$

Where V_t = true volume of the sample, cm³

Liquid displacement method

- Liquids such as water and ethyl alcohol cannot occupy the pores and crevices.
- If the powder is nonporous, this method is used.
- Select a solvent in which the powder is insoluble and heavy.
- Normally, the values obtained are somewhat lower than the helium displacement method.

✓ Method

- · Pycnometer or specific gravity bottle may be used.
- Weight of pycnometer = w₁
- Weight of pycnometer + sample (or glass beads) = w₂
- Weight of sample = $w_3 = w_2 w_1$
- Weight of pycnometer with powder and filled with solvent = W₄
- Weight of the liquid displaced by solids (related to volume of liquid displaced) = w₄ - w₂
- True density = $\frac{w^2 w^1}{w^4 w^2}$

COMPRESSED POWDERS

- The powder sample is compressed into a tablet using a punching machine with 1,00,000 lb/sqin.
- Now estimate the true density.
- Weight of the tablet = W₁
- Volume of the tablet = V (measure the dimensions with capillaries)
- True density = w_1/V

> GRANULE DENSITY

- Granule density is determined for the granules that are employed in the manufacture of tablets.
- Granule density is defined as : Granule density, ρ_g = granule weight / granule volume

BULK DENSITY

- It is defined mathematically as:
- Bulk density (ρ_b) = mass of a powder (w) / bulk volume (V_b)

> TAPPED DENSITY

- Tapped density = $m(mass) / V_0 = (volume of the powder bed at zero tapping)$
- ✓ Application :-
- · Bulk density is used to check the uniformity of bulk chemicals
- The size of capsule is mainly determined by bulk volume for a given dose of material. The higher the bulk volume, lower will be bulk density and bigger the size of the capsule.

POROSITY

- True volume = Volume of the powder itself.
- Granule volume = Volume of the powder itself + volume of intraparticle spaces.
- Bulk volume = Volume of the powder itself + volume of intraparticle spaces + volume of inter- particles spaces (voids).

- If the powder is nonporous i.e. no internal pores or capillary spaces, the bulk volume consists of true volume plus the volume of spaces between the particles, i.e. void volume,
- Void volume = V= bulk volume true volume or Vb Vp
- The porosity or solids, E, of the powder is defined as:
- Porosity or voids, ε = void volume /bulk volume

$$\varepsilon = \frac{\text{bulk volume - true volume}}{\text{bulk volume}} = \frac{\text{Vb - Vp}}{\text{Vb}}$$

- · Porosity is frequently expressed in percent.
- Percent, $\varepsilon = 1 vp/vb \times 100$
- The above equation can also be expressed in terms of density values.
- Percent, $\varepsilon = \rho_p \rho_b / \rho_b \times 100$

FLOW PROPERTIES OF POWDERS

- Flowability is the ability of a powder to flow through reliably.
- · Flow properties influence mixing and de-mixing of powders.
- These also influence the design of formulation and selection of process equipment.

ANGLE OF REPOSE

- The flow characteristics are measured by angle of repose. Improper flow of powder is due to frictional forces between the particles. These frictional forces are quantified by angle of repose.
- Angle of repose is defined as the maximum angle possible between the surface of a of the Carl powder and the horizontal Plane

$$\tan \theta = \frac{h}{r}$$

$$\theta = \tan \cdot 1 \frac{h}{r}$$

- Where h = height of pile, cm
- r = radius of the base of the pile, cm
- θ = angle of repose

PACKING ARRANGEMENTS

- The arrangement of particles in a powder influences the volume occupied by it.
- As a result, bulk density and subsequently porosity are affected.
- In view of its applications in disintegration and dissolution process, it may be necessary to understand the packing of particles in a powder both in theory and practice.
- When particles are considered to be of uniform size of spheres, then
 any one of the following packing arrangements are possible
 theoretically.
 - (1) Closet or rhombohedral packing
 - (2) Most open, loosest or cubic packing

most open, loosest, or cubic packing (48% porosity)

- In practice, particles in a powder are neither spherical nor uniform in size.
- Therefore, any type of packing between these ideal situations is possible.
 - (a) Porosities of powder (spherical particles) are about 26%. It means closed packing.
 - (b) Porosities of powder (spherical particles) are about 48%. It means loose packing.
 - (c) Porosities of powders, in general, are between 30% and 50%.
 - (d) Porosities below 30% are possible, if the particles differ greatly in the size distribution. The small particles accommodate the voids between large particles.
 - (e) Porosities above 50% are possible, when the particles are aggregated and flocculated.